热门搜索:

机器人模拟人脑 人工突触很节能

2017-04-07 12:09

来源:  关注网   作者: 关注网

字体:

  有种理论说,人类的智慧来源于一个单一的算法。这个理论的实验依据是,人类大脑发育初期,每一部分的职责分工是不确定的,也就是说,人脑中负责处理声音的部分其实也可以处理视觉影像。人脑究其本质来说,是一台可以被调试以执行特定任务的通用型机器。

  七年前,斯坦福大学计算机科学教授吴恩达偶然接触到了这一理论,这个理论醍醐灌顶般地改变了他对于人工智能本质的理解,重新点燃了他对人工智能技术的热爱,从而改变了他的职业轨迹。据他回忆,“有生以来第一次,我感到自己有可能在人工智能的研究领域取得一点进展。”

  科学家用有机材料制成了人工突触,可模仿神经元之间的信息传递第二看台

  多年以来,虽然计算机技术飞速发展,但是科学家们仍然难以构建出高效而精巧的大脑仿生计算机。近日,斯坦福大学和桑迪亚国家实验室的研究人员们构建出了一种人工突触,这种突触提高了计算机模拟人脑的效率,有力地促进了该领域的发展。

  “它就像真的突触一样,但它的确是人工设计的有机电子器件”,阿尔佩托·萨莱奥介绍道。他是斯坦福大学材料科学与工程系的副教授,同时也是本篇论文的资深作者。“此前从来没有报道过类似的结构,所以这完全是一种崭新的器件。此外,这种器件在很多关键参数上也优于无机器件。”

  该种新型人工突触不但成功地模仿了人脑中的突触传递信号的方式,而且能效也超过了传统计算机。计算机处理信息和存储信息是利用不同器件分别进行的。而在大脑中,进行信息处理的同时也自动储存了记忆。这项研究于近日发表在《自然·材料》上。将来,这种突触不但可能成为高仿人脑计算机中的一部分,而且还尤其适用于通过采集视觉和听觉信号来工作的计算机。这方面已有应用实例,如声控界面和无人驾驶汽车。

  自动完成存储

  在学习时,大脑中的神经元之间会传递电信号。这其中,信号在突触之间的首次传递是最耗能的。此后的每一次,所需的能量都会减少。这也解释了为什么突触能够有效地帮助我们学习新事物以及记住学过的东西。这种人工突触,与其他人脑计算机不同,它不仅可以同时完成这两项任务,还节约了大量能量。

  “深度学习算法虽然很强大,但是它依靠处理器的计算、电位状态的模拟,以及信息的存储,就能耗和时间两方面来说,效率低下”, 范德·布格特评论道。他此前是萨莱奥实验室的博士后,也是本篇论文的第一作者。“不同于模拟神经网络,我们的工作是构建一个神经网络。”

  人工突触的设计灵感源自电池。它有三个电极,电极本身由两个柔性薄膜组成,电极间则通过盐水电解液连接。这个设备工作起来就像晶体管那样,两个电极之间的电流,由第三个电极控制。

  研究人员使人工突触反复地充放电,以此效仿人类通过不断学习,来强化大脑中神经通路的过程。通过这种训练,研究人员能够预测突触达到特定的电位状态所需的电压,而突触一旦达到特定状态就能够将其保持下去。这种方法的不确定性仅有1%。换句话说,人工突触不像普通的计算机那样,在关闭前,需要将工作存入硬盘,它可以自动完成存储而不需要其他操作和组件。

  模拟人脑很节能

  研究人员虽然只构建出一个人工突触,但是却在它的身上进行了15000次测量实验,来探索人工突触如何在神经网络中排列。他们测试了模拟神经网络识别数字0到9的能力,测试量为三个数据集,结果表明其准确率达到了93%到97%。

  虽然这个任务对于人类来说比较简单,但是传统计算机因难以转换视觉和听觉信号,而困难重重。

  桑迪亚国家实验室的技术人员希望将该设备用于人脑模拟计算,“我们已经证明,这种人工突触是运行此类算法的理想设备,它很节能”。

  这种设备极其适用于信号的识别和分类,而这恰恰是传统计算机的瓶颈。数字晶体管只有0和1两种状态,研究人员却在人工突触上成功地实现了500种状态,这对神经元形态计算模型十分有用。在两种状态的转换中,人工突触只需花费少许能量,仅相当于顶尖级计算系统将数据从处理单元移动到存储器过程中能耗的十分之一。

  人工突触虽然已经如此节能,但是其耗能大约仍是生物体中的突触传递信号时最小耗能的10000倍。研究人员希望较小设备上人工突触的能耗效率,能够达到神经元水平。

  具备有机体潜能

  该设备中的每个部分都由便宜的有机材料制成。这些材料虽然都是人工合成的,但是主要由氢、碳两种元素组成,与大脑的化学环境兼容。细胞可以在这些材料上生长,这类材料也可用于制作输送神经递质的人工泵。此外,用于训练人工突触的电压也与人体神经元的电压相同。

  上述这些意味着,人工突触可以和活神经元通信,进而促进脑机接口技术的发展。这种柔软而灵活的材料适用于生物环境。然而,在应用于生物体之前,研究团队打算利用人工突触搭建真正的神经网络阵列,以便进行更深入的研究和测试。

  深度学习是人工智能技术朝新的研究方向迈出的第一步。简单地说,深度学习包含了构建能够模仿人类大脑行为的神经网络。这些多层次的电脑网络像人类大脑一样,可以收集信息,并基于收集到的信息产生相应的行为。这些电脑网络可以逐渐对事物的外形和声音进行感知和理解,也就是“认识”事物。

  比如,为了赋予机器“视觉”,研究人员需要建立最基本的一层人工神经元,用来探知如物体的边缘形状等基本信息,第二层神经元可以将第一层感知到了物体边缘性状拼凑起来,鉴定较大块的物体形状,然后再加一层将第二层检测到的信息再拼凑从而使机器明白物体整体的形态。这里面关键的一点是,软件可以自行做到这一切——旧的“伪人工智能”往往需要工程师人工输入物体视觉或者声音的信息,然后由机器学习算法来处理这些信息数据。


网友评论

Copyright © 2017 GZZGW.COM.CN 管理员信箱:admin@gzzgw.com.cn  京ICP备12017804号-1